Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications.
نویسندگان
چکیده
The fabrication of micrometer-sized core-shell particles for ultrasound-triggered delivery offers a variety of applications in medical research. In this work, we report the design and development of a glass capillary microfluidic system containing three concentric glass capillary tubes for the development of core-shell particles. The setup enables the preparation of perfluorocarbon-alginate core-shell microspheres in a single process, avoiding the requirement for further extensive purification steps. Core-shell microspheres in the range of 110-130 μm are prepared and are demonstrated to be stable up to 21 days upon immersion in calcium chloride solution or water. The mechanical stability of the particles is tested by injecting them through a 23 gauge needle into a polyacrylamide gel to mimic the tissue matrix. The integrity of the particles is maintained after the injection process and is disrupted after ultrasound exposure for 15 min. The results suggest that the perfluorcarbon-alginate microparticles could be a promising system for the delivery of compounds, such as proteins, peptides, and small-molecule drugs in ultrasound-based therapies.
منابع مشابه
Synthesis of uniform core-shell gelatin-alginate microparticles as intestine-released oral delivery drug carrier.
A core-shell gelatin-alginate composite used for intestine-released oral delivery drug carrier was synthesized through microfluidic technique. At the fixed continuous phase flow rate, the size of the core-shell gelatin-alginate microparticles increases with the dispersed phase flow rate, and monodispersity can be retained (the variation coefficient for the diameter distribution can be kept less...
متن کاملMicrofluidic fabrication of polymeric core-shell microspheres for controlled release applications.
We report a facile and robust microfluidic method to fabricate polymeric core-shell microspheres as delivery vehicles for biomedical applications. The characteristics of core-shell microspheres can be precisely and easily tuned by manipulating the microfluidic double emulsion templates. The addition of a shell can significantly improve the versatility as well as functionality of these microsphe...
متن کاملA novel method of cinnamon oil nanocapsulation in core-shell chitosan-alginate by freeze dryer
The objective of this work was to characterize the cinnamon oil nanocapsule that contained alginate-chitosan as coating agents. In this work, cinamonn oil loaded chitosan nanoparticles (CS-alginate NP-cinamonn) are prepared by a two-step process including oil/water emulsion and ionic gelation. In this study, cinamon as a core material was nanoencapsulated with chitosan alginate at a ratio of 1:...
متن کاملMicroencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release
The prevalence of pathogenic bacteria acquiring multidrug antibiotic resistance is a global health threat to mankind. This has motivated a renewed interest in developing alternatives to conventional antibiotics including bacteriophages (viruses) as therapeutic agents. The bacterium Clostridium difficile causes colon infection and is particularly difficult to treat with existing antibiotics; pha...
متن کاملControl of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles
Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 30 41 شماره
صفحات -
تاریخ انتشار 2014